21 research outputs found

    An informatics supported web-based data annotation and query tool to expedite translational research for head and neck malignancies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Specialized Program of Research Excellence (SPORE) in Head and Neck Cancer neoplasm virtual biorepository is a bioinformatics-supported system to incorporate data from various clinical, pathological, and molecular systems into a single architecture based on a set of common data elements (CDEs) that provides semantic and syntactic interoperability of data sets.</p> <p>Results</p> <p>The various components of this annotation tool include the Development of Common Data Elements (CDEs) that are derived from College of American Pathologists (CAP) Checklist and North American Association of Central Cancer Registries (NAACR) standards. The Data Entry Tool is a portable and flexible Oracle-based data entry device, which is an easily mastered web-based tool. The Data Query Tool helps investigators and researchers to search de-identified information within the warehouse/resource through a "point and click" interface, thus enabling only the selected data elements to be essentially copied into a data mart using a multi dimensional model from the warehouse's relational structure.</p> <p>The SPORE Head and Neck Neoplasm Database contains multimodal datasets that are accessible to investigators via an easy to use query tool. The database currently holds 6553 cases and 10607 tumor accessions. Among these, there are 965 metastatic, 4227 primary, 1369 recurrent, and 483 new primary cases. The data disclosure is strictly regulated by user's authorization.</p> <p>Conclusion</p> <p>The SPORE Head and Neck Neoplasm Virtual Biorepository is a robust translational biomedical informatics tool that can facilitate basic science, clinical, and translational research. The Data Query Tool acts as a central source providing a mechanism for researchers to efficiently find clinically annotated datasets and biospecimens that are relevant to their research areas. The tool protects patient privacy by revealing only de-identified data in accordance with regulations and approvals of the IRB and scientific review committee.</p

    Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel

    Get PDF
    Purpose: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. Methods: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. Results: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. Conclusion: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance

    Head and Neck PET/CT: Therapy Response Interpretation Criteria (Hopkins Criteria)—Interreader Reliability, Accuracy, and Survival Outcomes

    No full text
    UnlabelledThere has been no established qualitative system of interpretation for therapy response assessment using PET/CT for head and neck cancers. The objective of this study was to validate the Hopkins interpretation system to assess therapy response and survival outcome in head and neck squamous cell cancer patients (HNSCC).MethodsThe study included 214 biopsy-proven HNSCC patients who underwent a posttherapy PET/CT study, between 5 and 24 wk after completion of treatment. The median follow-up was 27 mo. PET/CT studies were interpreted by 3 nuclear medicine physicians, independently. The studies were scored using a qualitative 5-point scale, for the primary tumor, for the right and left neck, and for overall assessment. Scores 1, 2, and 3 were considered negative for tumors, and scores 4 and 5 were considered positive for tumors. The Cohen κ coefficient (κ) was calculated to measure interreader agreement. Overall survival (OS) and progression-free survival (PFS) were analyzed by Kaplan-Meier plots with a Mantel-Cox log-rank test and Gehan Breslow Wilcoxon test for comparisons.ResultsOf the 214 patients, 175 were men and 39 were women. There was 85.98%, 95.33%, 93.46%, and 87.38% agreement between the readers for overall, left neck, right neck, and primary tumor site response scores, respectively. The corresponding κ coefficients for interreader agreement between readers were, 0.69-0.79, 0.68-0.83, 0.69-0.87, and 0.79-0.86 for overall, left neck, right neck, and primary tumor site response, respectively. The sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy of the therapy assessment were 68.1%, 92.2%, 71.1%, 91.1%, and 86.9%, respectively. Cox multivariate regression analysis showed human papillomavirus (HPV) status and PET/CT interpretation were the only factors associated with PFS and OS. Among the HPV-positive patients (n = 123), there was a significant difference in PFS (hazard ratio [HR], 0.14; 95% confidence interval, 0.03-0.57; P = 0.0063) and OS (HR, 0.01; 95% confidence interval, 0.00-0.13; P = 0.0006) between the patients who had a score negative for residual tumor versus positive for residual tumor. A similar significant difference was observed in PFS and OS for all patients. There was also a significant difference in the PFS of patients with PET-avid residual disease in one site versus multiple sites in the neck (HR, 0.23; log-rank P = 0.004).ConclusionThe Hopkins 5-point qualitative therapy response interpretation criteria for head and neck PET/CT has substantial interreader agreement and excellent negative predictive value and predicts OS and PFS in patients with HPV-positive HNSCC

    Arrested natural killer cell development associated with transgene insertion into the Atf2 locus

    No full text
    Natural killer (NK) cell development in the bone marrow is not fully understood. Following lineage commitment, these cells appear to advance through a series of developmental stages that are beginning to be characterized. We previously reported a selective deficiency of NK cells in a C57BL/6 mouse with a transgenic construct consisting of the cDNA for the Ly49A major histocompatibility complex (MHC) class 1–specific inhibitory receptor driven by the granzyme A gene. This mouse has few NK cells in peripheral tissues with relative preservation of other immune cells, including T and B cells. Herein we demonstrate that these mice have an accumulation of NK cells with an immature phenotype in the bone marrow, consistent with a block at a previously proposed stage in normal NK-cell development. The phenotype is associated with transgenic insertion into Atf2, the gene for the basic leucine zipper (bZIP) transcription factor family member ATF-2. Although analysis of Atf2-null NK cells shows no defect, the transgenic mice express abnormal truncated Atf2 transcripts that may mediate a repressor effect because ATF2 can heterodimerize with other bZIP molecules. The defect is cell intrinsic, suggesting that certain bZIP molecules play significant roles in NK-cell development
    corecore